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In this work we propose a general nonparametric test of causality for weakly dependent time series. More
precisely, we study the problem of attribution, i.e., the proper comparison of the relative influence that two or
more external dynamics trigger on a given system of interest. We illustrate the possible applications of the
proposed methodology in very different fields like physiology and climate science.
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I. INTRODUCTION

Detecting interdependencies and causal relationships is
one of the most relevant problems among those addressed by
time series analysis. As more and better data become avail-
able along with technological progress, this issue is receiving
increasing attention in the literature �1–14�. Applications are
ubiquitous in almost all fields of science, like physics, eco-
nomics, and ecology, to name a few, or physiology—most
notably in brain studies. In this last case, for example, infor-
mation about the interaction among recorded channels of an
electroencephalogram can aid clinical practice by pinning
out the region of the brain that is acting as a recruiting focus
in epilepsy.

Commonly used tools for the estimation of dependencies
are linear cross-correlation, cross-spectra �16�, and mutual
information �17�. However, these measures share the prop-
erty of being symmetric and, as such, are not suited for as-
sessing causality within relationships. To study the direc-
tional aspect of interactions, many approaches have been
employed. One of them consists in examining whether the
prediction of one series can be improved by incorporating
information from the other �1–3�. This was originally pro-
posed by Wiener �18� and later formalized by Granger �19�
in the context of linear regression models of stochastic pro-
cesses. Specifically, if the variance of the prediction error of
a given time series at the present time is reduced by the
inclusion of past measurements from a second time series in
a linear regression model, then the latter is said to have a
causal influence on the former. Of course, the roles can be
inverted to address the question of causal influence in the
opposite direction. Since Granger causality was formulated
for linear models, its direct application to nonlinear systems
may not be appropriate. Granger’s idea has thus been ex-
tended to the nonlinear case either �i� by restricting its appli-
cation to local linear models in reduced neighborhoods and
then averaging the resulting statistical quantity over the en-
tire dataset �13�, or �ii� by considering the error reduction
triggered by added variables in global nonlinear models �1�.
Despite the success of these strategies, it must be noticed that
model-based methods �linear or not� may suffer from the
shortcomings of a model misspecification. In order to avoid
this problem, we have used in this work a general nonpara-
metric test of causality for stationary and weakly dependent
time series based on Information Theory �9,11,12�. More
precisely, the proposed measure builds upon conditional en-

tropy, which, in contrast to the standard form of mutual in-
formation �20,21� or delayed-related measures, allows us to
distinguish actually transported from shared information.
Furthermore, since correlation integral-based entropies need
minimal assumptions about the underlying dynamics of the
systems and the nature of their coupling, their application
does not assume the existence of any deterministic process
�14,15�. Specifically, our purpose is to compare the relative
influence that two or more external dynamics exert on a
given system of interest. To this end, we start by considering
a construction by Schreiber �14� and derive a new
information-theoretic attribution technique, as described in
the next section.

II. THEORETICAL ASPECTS

We first need to briefly recall the concept of transfer en-
tropy �see Ref. �14� for details�. Assume that we observe
three physical processes X, Y, and Z, visiting states xi, yi, and
zi with probabilities p�xi�, p�yi�, and p�zi�, respectively. We
think of X, Y, and Z as interacting subsystems of a whole, xi,
yi, and zi being, in principle, multivariate descriptors of their
respective internal states �22�. We are interested in compar-
ing the relative influence that Y and Z have on X. The trans-
fer entropy from Y to X is defined by

TY→X = �
i

p�xi,yi,zi�log
p�xi�yi,zi�

p�xi�zi�
, �1�

where the sum extends over all states i visited by the com-
posite system. Its most appealing feature is that—unlike mu-
tual information or conditional entropy—it is essentially
asymmetric in X and Y, detecting the directional transport of
information. By virtue of the conditioning to the state of Z
under the logarithm, it ignores all static correlations between
X and Y that could be possibly triggered by their common
interaction with Z. �The generalization to the case of more
subsystems is straightforward.� For continuous systems, in
time series applications, the transfer entropy is obtained by
coarse graining the state space at resolution �, thus making
TY→X dependent on the size of the partitioning. The transition
probabilities involved in �1� read as p�xi �yi ,zi�
= p�xi ,yi ,zi� / p�yi ,zi�, and the latter can be approximated by
the visitation frequency
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p�xi,yi,zi� =
1

Npairs
n��xij � �,�yij � �,�zij � �� ,

where �xij = �xi−xj� �analogous definitions hold for �yij and
�zij�, Npairs denotes the total number of ij pairs available,
and n�·� is the number of couples satisfying the correspond-
ing distance constraints.

Defined in this way, transfer entropy is best suited for the
study of homogeneous spatially extended systems, like iden-
tical maps coupled on a lattice. In contrast, as noted in �14�,
when the processes are of a different nature, the driven sys-
tem will most probably respond with a different sensitivity to
each forcing agent, and the transfer entropy �1� will depend
on the overall dynamic range of the signals. To overcome
this difficulty, and inspired by the work of Pi and Peterson
�23�, we propose to redefine probabilities by distorting cubic
neighborhoods in state space:

p*�xi,yi,zi� =
1

Npairs
n��xij � �,�yij � �Y,�zij � �Z� .

Now the question naturally arises as how to choose appro-
priate values for �Y and �Z. To answer it, e.g., in the case of
Y, we consider the conditional probability

p*�xi�yi� =
n��xij � �,�yij � �Y�

n��yij � �Y�
.

If for any fixed � �for instance �=�x� we think of p*�xi �yi� as
a function of �Y only, then a possible choice is given by

�Y = arg max p*�xi�yi� .

The rationale behind this maximization follows. How does
the conditional probability p*�xi �yi� behave as a function of
�Y? For �Y →� the conditioning has no effect and hence
p*�xi �yi�= p�xi�. As �Y →0, p*�xi �yi� either remains flat �if X
is independent of Y� or grows monotonically until saturation
to a certain value smaller than 1. For vanishing �Y, the com-
putation of p*�xi �yi� becomes spoiled by the finite sample
size and deflects down to zero �24�. Thus, the interesting
features of the information transport from Y to X are to be
found neither at big nor small values of �Y, but at some
appropriate scale in between. It is this relevant scale that will
be picked up by the maximization process, something previ-
ously forbidden by the rigidity of cubic neighborhoods. This
procedure makes now irrelevant the assignment of a particu-
lar overall scale to Y. Along the same lines, we choose �Z
=arg max p*�xi �zi�.

Finally, we add a normalization factor to build an inten-
sive measure and define the information transfer from Y to X
as

ITY→X =
1

N
�

i

p*�xi,yi,zi�log
p*�xi�yi,zi�

p*�xi�zi�
, �2�

where N is the length of the available database. Now, an
important issue is how to assess the significance of the infor-
mation transfer ITY→X detected by �2� at each scale �. To this
end, after the composite state vectors �xi ,yi ,zi� have been
built, we generate randomized controls by time shuffling �yi�

while leaving the setting otherwise identical �25�. However,
we observe that this scrambling will whiten the power spec-
trum of Y. �For simplicity, let us briefly assume that all sub-
systems are unidimensional.� Its properties will change com-
pletely: the random shuffle will be wildly irregular even if
the Y data represent a very smooth signal. Thus, seeking a
sound basis for comparison, our first step will be to time
shuffle the complete original embedding vectors �xi ,yi ,zi�,
yielding all spectra initially white.

III. A WORKED EXAMPLE

To illustrate the advantages and limitations of this meth-
odology, we first consider a simple example involving unidi-
mensional subsystems. We generate a set of samples
�xi ,yi ,zi�, i=1, . . .N, according to

xi = yi�18yi
2 − 27yi + 10�/2 + zi�1 − zi� ,

yi = �1 − cos�2�i/315��/2,

zi = �1 + sin�2�i/80��/2, �3�

depicted in Fig. 1. As expected by construction, X exhibits
both large- and small-scale variability—the Y contribution to
X was chosen bigger than that of Z. The existing causal con-
ditionings among these variables seem elusive to the naked
eye, probably hidden by their highly nonlinear character. For
example, when Z increases, X may equally respond by in-
creasing or decreasing, and the same holds true when Z goes
down; for Y we encounter a similar situation. This is readily
reflected by vanishing standard cross-correlation coefficients:
RXY =−0.09 and RXZ=−0.08. We have also added Gaussian
noise to the time series of all subsystems with an increasing
standard deviation ratio �noise /�C=0 to 1, where the symbol
C denotes the X, Y, and Z components.

As described in the previous section, we start by shuffling
in time the states of the composite system �xi ,yi ,zi�, so that
all spectra are initially white. We compute ITY→X and further
scramble Y to assess the significance of this result; the same
procedure is also applied to Z. The information transfers
ITY→X and ITZ→X obtained in this way for N=100 and 1000
are plotted with thick lines in Fig. 2. Consider the noise-free
case first, depicted in the left panels. Not surprisingly, detec-

FIG. 1. Worked artificial example: the component time series in
the noise-free case, before the initial shuffle described in the main
text.
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tions become sharper when more observational data are
available. In particular, we notice that with less uncertainty
IT consistently vanishes for all � over the randomized con-
trol populations. For small datasets and neighborhood sizes
our measure seems to be biased toward overestimation.
Should we be interested in a precise absolute computation of
IT, we would need to implement a correction for this effect.
However, since such an offset is irrelevant to our only pur-
pose of comparison, we will ignore it in the following. We
further notice the predominance of Y over Z at all scales, and
also how ITY→X is significant for scales where ITZ→X is not
�0.4���0.7, N=1000�, which is interpreted as Y being re-
sponsible for a larger-scale variability of X than Z.

An examination of the noisy cases plotted in the right
panels of Fig. 2 reveals a surprising increase in ITY→X, in
particular, for N=100—but also for N=1000. This result
contradicts, in principle, the natural expectation that the pres-
ence of contaminating noise would attenuate the detecting
power of the proposed statistics. To investigate this effect
closer, we construct an informal measure AY �AZ� as the area
under ITY→X �ITZ→X� that lies above the corresponding 2�
control level plotted with thin lines in Fig. 2. We show in
Fig. 3 the behavior of AY and AZ as a function of noise
intensity for N=100, 400, and 1000. We observe that only AZ
indeed follows our intuition, i.e., growing noise levels in-
creasingly hide the existing dependency of X on Z. Looking
back at Eq. �2�, we see that a faster decreasing trend in
p*�xi �zi� as compared to p*�xi �yi ,zi� is responsible for the
observed increase in ITY→X. Stated in other words, as the less
influential input Z goes buried first into noise �and this effect
is more noticeable with fewer data�, the importance of Y is
strengthened by the relative character of our measure. As we
can see in Fig. 3 for N=100, a noise-level �noise /�C=0.2 is
strong enough to spoil the detection of any information trans-
fer from Z to X, and this transition yields a dramatic increase
in AY.

A final remark: We have checked that these results remain
unaffected by arbitrary rescalings of Y and Z, and that only
the corresponding transport scales �Y and �Z change accord-
ingly.

IV. APPLICATIONS

A. Cardiorespiratory interaction

We now consider Dataset B of the Santa Fe Time Series
Competition �26�. This is a multivariate dataset recorded
from a patient in the Sleep Laboratory of the Beth Israel
Hospital in Boston, MA. The recorded magnitudes are heart
rate �H�, chest volume or respiration force �R� and blood
oxygen concentration �O�, and are plotted in Fig. 4.

Under normal, physiological conditions, the heart rate is
modulated by respiration through a process known as Respi-
ratory Sinus Arrhythmia �RSA�. It is the natural cycle of
arrhythmia that occurs through the influence of breathing on
the flow of sympathetic and vagus impulses to the sinoatrial
node of the heart. More precisely, its rhythm is primarily
under the control of the vagus nerve, which inhibits the heart
rate and the force of contraction. When we inhale, vagus
nerve activity is impeded and the heart rate begins to in-
crease. When we exhale, this pattern is reversed. This quasi-
periodic modulation of heart rate by respiration is most no-
table in young, healthy subjects �27� and decreases with age.
The degree of fluctuation in the heart rate is also controlled
significantly by regular impulses from the baroreceptors
�sensors of partial pressure of oxygen and carbon dioxide� in
the aorta and carotid arteries.

However, Dataset B corresponds to a patient suffering
from sleep apnea, which is a breathing disorder characterized
by brief interruptions of breathing during sleep. There are
two types of sleep apnea: central and obstructive. Central
sleep apnea, which is less common, occurs when the brain

FIG. 2. ITY→X and ITZ→X �thick lines� as a function of length
scale � for the artificial example. Full lines are everywhere associ-
ated to Y, and dashed to Z. Thin lines embrace two standard devia-
tions of the distribution of IT over a control population of size
1000. Upper and lower panels correspond to database sizes N
=100 and N=1000, respectively. Increasing noise levels from left to
right.

FIG. 3. Area in excess of the two-sigma reference level as a
function of noise intensity �noise /�C for N=100 �full squares�, N
=400 �open circles, dashed line�, and N=1000 �dots, full line�.
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fails to send the appropriate signals to the breathing muscles
to initiate respirations. Obstructive sleep apnea is far more
common and occurs when air cannot flow into or out of the
person’s nose or mouth although efforts to breathe continue.
During apneic events, the person is unable to breathe in oxy-
gen and to exhale carbon dioxide, resulting in low levels of
oxygen and increased levels of carbon dioxide in the blood,
which alert the brain to resume breathing and cause an
arousal. With each arousal, a signal is sent from the brain to
the upper airway muscles to open the airway; breathing is
resumed, often with a loud snort or gasp �28�.

As described above, sleep apnea affects the normal pro-
cess of RSA, disturbing the usual patterns of interaction and
feedback among the heart rate, respiration, and blood oxygen
concentration. As a result, the control of the heart rate by
respiration becomes unclear. It may well be blocked, in ac-
cordance with the change in dynamics that is characteristic
of the so-called “dynamical diseases.” Furthermore, in some
studies it has been claimed that a weak coupling in the re-
versed direction could be observed �14,29,30�. However,
these investigations were based on a bivariate analysis of
only the heart and respiration time series, disregarding feed-
back interplays with blood oxygen concentration. Here we
raise the following question: How much information is trans-
ferred from R to H and vice versa, excluding possibly shared
dynamics triggered by their common interaction with O?

To answer this question, we begin by scrambling in time
the states of the composite system �Hi ,Ri ,Oi�, so that all
spectra are initially white. We compute ITR→H and shuffle R
to assess the significance of this result; the same procedure is
also applied to O. The information transfers ITR→H and
ITO→H obtained in this way are plotted with thick lines in
Fig. 5. As we can see in this figure, the influence of R on H
lies within the 2� limit of the control population. This means
that R yields no significant information on H in excess of
that already furnished by O. In contrast, we find a significant
flow of information from O to H beyond their common in-
teraction with R.

In Fig. 6 we compare the influence that heart rate and
blood oxygen concentration exert on the respiration force.
Much like the previous case, the flow from H to R falls
within the values expected for the control population and
therefore cannot be considered significant. Instead, we ob-
serve that blood oxygen concentration is sensibly affecting
the dynamics of respiration, a result that is in nice agreement
with the known mechanism of control by baroreceptors de-
scribed above.

Finally, in Fig. 7 we compare for completeness the influ-
ence that heart rate and respiration exert on blood oxygen
concentration. Not surprisingly, we find that both dynamics
significantly affect the level of blood oxygen. Together with
our previous results, they constitute a reflection of complex
two-way interactions between H and O, and R and O. Over-
all, respiration seems to be a more decisive factor in deter-
mining blood oxygen levels than is the heart rate.

Now, as Fig. 4 shows, the raw series cannot be assumed
stationary, a property that is, however, essential for the va-
lidity of the present analysis. One of the two standard solu-

FIG. 4. Simultaneously measured time series of instantaneous
heart rate �upper panel�, respiration force �middle�, and blood oxy-
gen concentration �lower panel� of a sleep apnea patient. The data
are given in uncalibrated A/D bits with a sampling frequency of
2 Hz.

FIG. 5. Information transfer to the heart rate time series coming
from respiration �full line� and blood oxygen concentration �dashed
line�. Thin lines indicate two standard deviations of the results over
the control population.

FIG. 6. Information transfer to the respiration time series com-
ing from heart rate �full line� and blood oxygen concentration
�dashed line�.
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tions to this problem is to define some new variable that can
be regarded as sufficiently stationary. In financial time series
applications, e.g., this is usually accomplished by consider-
ing either the increments �x	�t�=x�t+	�−x�t�, returns
�x	�t� /x�t�, or log returns time series ln�x�t+	��−ln�x�t��.
However, this procedure is only optimal to cope with the
so-called weak nonstationarities—drifting mean and vari-
ance. In the general case of a single long time series gener-
ated by a dynamics slowly varying in time, the nonstationar-
ity can be approximately mapped to a stationary situation by
cutting the time series into �potentially overlapping� inter-
vals, if the change in the dynamics is sufficiently slow. In a
strict sense, the resulting segments will still be slightly non-
stationary. Hence, time averages will no longer represent av-
erages according to an invariant distribution, which in turn
prevents the interpretation of relative frequencies as true
probabilities. This loss of the ergodicity condition constitutes
the main conceptual drawback of nonstationarity for the
whole time series analysis branch. Nevertheless, the accepted
view in the literature is that—by dropping their correspond-
ing physical interpretations and considering the measures as
having only a relative character—useful conclusions can still
be drawn by comparison, both with surrogate populations as
well as with neighboring windows. It is in this spirit that
many concepts derived from the theory of nonlinear time
series analysis, like Lyapunov exponents or the correlation
dimension, have been applied in sliding windows for the
study of EEG or other records of physiological activity
�31–34�. In our case the nonstationarity should not necessar-
ily be considered disadvantageous, but can instead be used to
identify periods of weaker and stronger coupling between the
subsystems. We have thus estimated causalities as a function
of time—a procedure that naturally raises a tradeoff between
stationarity and the window length L considered. On one
hand, the stationarity condition is better fulfilled for decreas-
ing L. On the other hand, statistical significance testing
against control populations may yield negative results in this
limit due only to an insufficient amount of data. The compe-
tition between these two factors was already illustrated for
the worked example of the previous section, where we

showed their interplay for the system �3� for varying window
lengths and noise levels. In the present case, we have looked
for converging evidence by probing different window
lengths. In order to summarize the new information, we plot
in Fig. 8 the area under the IT vs � curves that lie above the
corresponding 2� control levels for all possible causal com-
binations among respiration, heart rate, and blood oxygen
concentration. We first employed almost-overlapping win-
dows of size L=N /2=1230 data points, corresponding to a
temporal span of roughly 600 s �see Fig. 4�, with consecutive
windows differing only in a single data point. These results
are depicted with thick lines in all panels of Fig. 8. We have
also performed a finer scanning, sliding a half-sized window
of length L=N /4=615 data points �approx. 300 s�, and plot
the �more fluctuating� obtained causalities with thin lines.
The evolving relative influence that heart rate and blood oxy-
gen concentration exert on the respiration rhythm can be
compared in the upper panel. A null information transfer
from H to R is confirmed for all epochs of the window sizes
considered, whereas the oxygen influence slightly increases
during the first half of the record and steadily decreases in
the second half. Furthermore, AO→R eventually vanishes for
L=N /4 �beyond t=900 s�. Although it cannot be completely
ruled out that this may be a reflection of a small window size
collecting an insufficient amount of data, the fact that detec-
tion was possible for earlier epochs together with an overall
evolution of AO→R consistent with L=N /2 �thick solid line�
suggest that the information flow is indeed vanishing for the
last epochs of the record. The case corresponding to the heart
rate is depicted in the central panel, and it shows a general
behavior rather similar to that already encountered for the
respiration time series in the upper panel. Finally, in the
lower panel we plot the temporal evolution of the estimated
influences that R and H exert on O. In spite of the fluctuating
character of these curves, both window sizes confirm the
contention that respiration is a more decisive factor in deter-
mining blood oxygen levels than is heart rate.

FIG. 7. Information transfer to the blood oxygen concentration
time series coming from heart rate �dashed line� and respiration
�full line�.

FIG. 8. Temporal evolution of detected causalities in sliding
windows, as measured by the area in excess of the 2� reference
level versus the interval middle-point position. Thick lines corre-
spond to a window size L=N /2; thin lines of the same type are
employed for the case L=N /4.
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In conclusion, the analysis in this section has shown that a
bivariate analysis of heart rate and respiration is insufficient,
it being essential that their interaction with the baroreceptor
system of control be also encompassed. This fact was previ-
ously suggested in other studies in the literature �14,30�. In
accordance with the intrinsic change in dynamics that is
characteristic of the so called dynamical diseases, respiratory
sinus arrhythmia seems to be blocked in the pathological
case of sleep apnea. Of course, for this conclusion to be valid
in general, systematic tests should be performed on a more
extensive database, a task that is beyond the scope of this
work.

B. Climate change

To illustrate the possibilities of application of this tool in
very different areas, in this subsection we make a prelimi-
nary study of the problem of climate change. It is well
known that the global climate has changed rapidly over re-
cent decades, as reflected by evolving patterns of tropical
circulation, monsoon rainfall, and other climatological pa-
rameters �35�. In particular, global temperatures have in-
creased by �0.6±0.2� °C since 1860 �36�. A question that has
become increasingly crucial is to determine the relative re-
sponsibility of several potentially explaining factors: the
emission of heat-trapping greenhouse gases, the Sun’s in-
creased radiative output, the lack of volcanic activity, the
changes in atmospheric ozone, etc. �37�. Among these, the
unambiguous characterization of forcing by greenhouse
gases �GHG� as opposed to solar total irradiance �STI� is
particularly important due to their anthropogenic origin.

On one hand, there is a well-established consensus on
warming by increased GHG, supported by extensive simula-
tions with atmosphere-ocean general circulation models
�AOGCMs� for the past centuries �38,39�. On the other hand,
a number of paleoclimatic reconstructions of global tempera-
tures show a conspicuous correlation to the secular behavior
of the Sun’s irradiance �40�, but the absolute variations in
solar intensity are small and the physical mechanisms for the
required amplification have not been identified. Attempts in
this direction are given, e.g., by recent experiments with the
GISS �Goddard Institute for Space Studies� stratospheric
general circulation model that show that solar variability af-
fects surface winds, sea-level pressures, and regional surface
temperatures �41�. However, the conclusions drawn from
these simulations will be continuously revised insofar as
GCM models are refined and their performances improved.
This constitutes a formidable task, for atmospheric dynamics
is extremely complex and not fully understood: among other
delicate issues, its models must account for couplings with
the land, oceans, and associated nonlinear feedbacks, to-
gether with their chemical responses to increased radiation at
all wavelengths �42�. It is generally accepted that AOGCMs
are at least quantitatively uncertain with regard to the re-
gional patterns of the behavior of climate, the hydrological
cycle, or sea ice drift �see Ref. �43� for a review�. One of the
remaining inconsistencies is that they cannot fully account
for the observed difference in the trend between superficial
and lower tropospheric temperatures over the last 20 years,

even when all known external influences are included �35�.
In view of these caveats, a model-free statistical method is

attractive. As an advantage, this approach offers the possibil-
ity of directly testing hypotheses on the observational data.
The standard practice along this line is to employ “optimal
detection techniques,” which are essentially multiple-
regression frameworks that assume that the observations of
interest can be explained as a linear combination of exog-
enous candidate signals plus noise �45�. The procedure con-
sists of estimating the unknown coefficients and testing the
null hypothesis that they vanish. More involved techniques
developed from information theory have already been ap-
plied to some climatic problems �46� but, to the best of our
knowledge, no nonparametric approach to this particular
problem has been pursued. In this section we apply the pro-
posed tool to measure to which extent the above-mentioned
candidate factors contribute to information production in a
time series of global temperatures.

To study this problem we consider the history of the last
400 years. We choose to describe the state of this system in
the space �Ti ,STIi ,GHGi�, excluding time-lagged copies of
these variables because small dimensions are preferable both
for computational reasons and to avoid depopulation of the
state space due to the curse-of-dimensionality effect. The
data consist of yearly averages of physically based recon-
structions of these magnitudes �47� and are depicted in Fig.
9. We here represent GHG by the standard equivalent radia-
tive forcing for CO2 and other well-mixed trace gases like
methane, nitrous oxides, and chlorofluorocarbons. Other po-
tentially forcing mechanisms like tropospheric aerosols were
excluded to keep the description as simple as possible. An-
other reason to exclude volcanic forcing is that pulses of
volcanism have a cooling effect, irrespective of the tempera-
ture level. Therefore, temperature variations should also be
included as a new state-space variable to properly account
for this interaction.

In Fig. 10 we show ITCO2→T and ITSTI→T as a function of
the length scale �, which in this case has units of temperature
anomalies. We observe that �i� there is a predominant influ-
ence of CO2 on T over all scales, and �ii� the information
gained about T because of knowing CO2 becomes significant

FIG. 9. Available registers for the problem of climate change.
Temperature anomalies are represented with a full thick line; STI
�full thin line� and GHG �dashed line� have been rescaled to the unit
interval only for ease in plotting.
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at slightly bigger scales than STI. In this last case, we notice
that the effects of solar irradiance variations on north-
hemispheric average temperatures are to be observed most
probably around 0.2 °C. This figure agrees with the results
presented in �48�, where the authors report that their simula-
tions with the GISS GCM for the 20th Century show that
solar irradiance changes affect superficial temperatures on
Earth by 0.2 °C–0.25 °C.

We have also performed a sliding window analysis to gain
some insight into the possibly changing character of the cou-
pling between these magnitudes. Given that in this case the
data availability is more limited than in the physiological
application, we have only considered half-sized windows,
i.e., L=N /2=200. We slid this 200-years window with a
minimal step of 1 year, computing as before the area under
IT*→T��� beyond the 2� significance limit imposed by the
control population. We have now �arbitrarily� chosen to as-
sign the obtained causalities to the end point of the corre-
sponding interval. As we can see in Fig. 11, important
changes in the relative influence of CO2 and STI took place
along different centuries. More precisely, we observe a domi-
nating solar influence on temperature anomalies in the pre-
industrial era that gradually declined toward the end of the
19th Century. With the advent of the 20th Century this pat-
tern reversed to an increasing prevalence of anthropogenic
activity as the main explaining factor of temperature vari-
ability, despite the also increasing explaining power that STI
accused during the last six decades. The most interesting
aspect of these results is given by the fact that they were
obtained along a purely data-driven path, i.e., independently
of any possible AOGCM misspecification error.

Summing up, this preliminary study has shown, using
a model-free approach, that STI seems to account for a
smaller-scale behavior of global temperatures than GHG.
However, it must be noted that we have employed only one
particular set of climate reconstructions covering the history
of the last 400 years, which represents a very limited time
span for paleoclimatic time scales. An extensive study using

the many millenial reconstructions of both temperature
anomalies �49� and solar irradiance �50� that have been
achieved by different authors in recent years will be the sub-
ject of future work.

V. CONCLUSIONS

We have presented a new model-free, information-
theoretical tool useful to compare the relative influence of
two or more external dynamics impinging on a system of
interest. Using a synthetic example and two interesting real-
world applications belonging to dissimilar fields, we have
shown that this methodology allows us to make a rich and
scale-resolved analysis—with many potential research appli-
cations both within and outside nonlinear dynamics and
physics.

The main conclusion of our analysis of the cardiorespira-
tory interaction is that a bivariate description of the heart
rate–respiration feedback is limited and fails to provide a
sufficient representation for this problem. In particular, their
interaction with the baroreceptor system of control must be
also encompassed. In accordance with the intrinsic change in
dynamics that is characteristic of dynamical diseases, our
results support the contention of a blocking of respiratory
sinus arrhythmia by sleep apnea. We emphasize that system-
atic tests must be performed on a more extensive database in
order to corroborate the general validity of this conclusion.
This will be the subject of future work.

The concrete application to the attribution problem of cli-
mate change revealed that the emission of heat-trapping
greenhouse gases—as represented by CO2—has significantly
affected global temperatures on bigger scales than the solar
radiative output. Our result is in agreement with the estab-
lished consensus in the literature but, being itself a data-
driven approach, has the advantage of avoiding possible
model misspecification errors. However, we would like to
point out that our results must be considered preliminary as
they were obtained on a restricted database and need to be
ascertained using newly available millenial reconstructions
�49,50�.

FIG. 10. Information transfer to the Mann et al. temperature
anomalies time series T coming from CO2 �full line� and STI
�dashed line�.

FIG. 11. Climate change problem: temporal evolution of de-
tected causalities in sliding windows of 200 years, as measured by
the area in excess of the 2� reference level versus the interval
end-point position.
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Finally, a note of caution concerning nonstationarity.
Changing environmental or internal conditions are ubiqui-
tous in real data and constitute a critical issue not only for
this work, but for the whole time series analysis branch. That
physiological or geophysical data cannot be considered sta-
tionary is widely accepted, but few attempts have been made
in order to develop statistical methods to appropriately cope
with this situation. With reference to our formal derivation,
nonstationarity means that we cannot interpret the measured
visitation frequencies in phase space as true �single or con-
ditional� probabilities. However, at the expense of abandon-
ing the attractive physical interpretations of the stationary
case, useful conclusions can still be drawn. This perspective

has also been adopted in previous studies in the literature,
and amounts to considering the measures as having essen-
tially a relative character and employing them only in com-
parison with control populations or neighboring windows.
By slightly relaxing the stationarity condition of applicabil-
ity, the analysis can be actually enriched by identifying pe-
riods of weaker and stronger coupling between the indices.
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